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Abstract
This paper considers online optimal control with affine con-
straints on the states and actions under linear dynamics with
random disturbances. We consider convex stage cost func-
tions that change adversarially. Besides, we consider time-
invariant and known system dynamics and constraints. To
solve this problem, we propose Online Gradient Descent with
Buffer Zone (OGD-BZ). Theoretically, we show that OGD-
BZ can guarantee the system to satisfy all the constraints
despite any realization of the disturbances under proper pa-
rameters. Further, we investigate the policy regret of OGD-
BZ, which compares OGD-BZ’s performance with the per-
formance of the optimal linear policy in hindsight. We show
that OGD-BZ can achieve Õ(

√
T ) policy regret under proper

parameters, where Õ(·) absorbs logarithmic terms of T .

1 Introduction
Recent years have witnessed a growing interest on solving
control problems by leveraging learning-based techniques,
e.g. online learning and/or reinforcement learning (Agarwal
et al. 2019; Dean et al. 2018; Ibrahimi, Javanmard, and Roy
2012; Dean et al. 2019a; Fazel et al. 2018; Yang et al. 2019).
This is motivated by various applications, such as data cen-
ter cooling (Lazic et al. 2018), robotics (Fisac et al. 2018),
autonomous vehicles (Sallab et al. 2017), etc. However, for
real-world implementation, it is crucial to design safe algo-
rithms that guarantee the system to satisfy certain (physical)
constraints despite unknown disturbances. For example, the
temperatures of a data center should be maintained within
certain range to reduce task failures despite possible distur-
bances from external heat sources, and quadrotors should
avoid collision with obstacles even when perturbed by wind,
etc. In addition to safety, many applications involve time-
varying environments, such as varying electricity prices and
moving targets. Therefore, the safe algorithm design should
not be over-conservative and should adapt to time-varying
environments for desirable online performance.

In this paper, we design safe algorithms for time-varying
environments by considering the following constrained on-
line optimal control problem. Specifically, we consider a lin-
ear system with random disturbances

xt+1 = Axt +But + wt, t ≥ 0, (1)
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where disturbance wt is random and satisfies ‖wt‖∞ ≤ w̄.
Consider affine constraints on the state xt and the action ut:

Dxxt ≤ dx, Duut ≤ du, ∀ t ≥ 0. (2)

For simplicity, we assume the system parameters A,B, w̄
and the constraints are known. At stage 0 ≤ t ≤ T , a convex
cost function ct(xt, ut) is adversarially generated and the
decision maker selects a feasible action ut before ct(xt, ut)
is revealed. We aim to achieve two goals simultaneously: (i)
to minimize the sum of the adversarially varying costs, (ii) to
satisfy the constraints (2) for all t despite the disturbances.
There is a rich body of work addressing each goal separately
but lack results on both goals together as discussed below.

Firstly, there is recent progress on online optimal control
to address the goal (i). A commonly adopted performance
metric is policy regret, which compares the online cost with
the cost of the optimal linear policy in hindsight (Agarwal
et al. 2019). Sublinear policy regrets have been achieved
for linear systems with either stochastic disturbances (Co-
hen et al. 2018; Agarwal, Hazan, and Singh 2019) or ad-
versarial disturbances (Agarwal et al. 2019; Foster and Sim-
chowitz 2020; Goel and Hassibi 2020). However, most liter-
ature only considers the unconstrained control problem. Re-
cently, (Nonhoff and Müller 2020) studies constrained on-
line optimal control but assumes no disturbances.

Secondly, there are many papers from the control com-
munity to address goal (ii): constraints satisfaction. Perhaps
the most famous algorithms are Model Predictive Control
(MPC) (Rawlings and Mayne 2009) and its variants, such as
robust MPC which guarantees constraints satisfaction in the
presence of disturbances (Bemporad and Morari 1999; Kou-
varitakis, Rossiter, and Schuurmans 2000; Mayne, Seron,
and Raković 2005; Limon et al. 2010; Zafiriou 1990). How-
ever, robust MPC tends to sacrifice optimality for safety.
Further, there lacks regret/optimality analysis for robust
MPC under adversarially varying costs.

Therefore, an important question remains to be addressed:
Q: how to design online algorithms to both satisfy the con-
straints despite disturbances and yield o(T ) policy regrets?

Our contributions. In this paper, we answer the question
above by proposing an online control algorithm–Online Gra-
dient Descent with Buffer Zones (OGD-BZ). To develop
OGD-BZ, we first convert the constrained online optimal
control problem as an OCO problem with temporal-coupled



stage costs and temporal-coupled stage constraints, and then
convert the temporal-coupled OCO problem to a classical
OCO problem. The problem conversion leverages the tech-
niques from recent unconstrained online control literature
and robust optimization literature. Since the conversion is
not exact/equivalent, we tighten the constraint set by adding
buffer zones to account for approximation errors caused by
the problem conversion. We then apply classical OCO algo-
rithms such as OGD to solve the problem and call the result-
ing algorithm as OGD-BZ.

Theoretically, we show that, with proper parameters,
OGD-BZ can ensure all the states and actions to satisfy the
constraints (2) for any disturbances bounded by w̄. In addi-
tion, we show that OGD-BZ’s policy regret can be bounded
by Õ(

√
T ) for general convex cost functions ct(xt, ut) un-

der proper assumptions and parameters. As far as we know,
OGD-BZ is the first algorithm with theoretical guarantees on
both sublinear policy regret and robust constraints satisfac-
tion. Further, our theoretical results explicitly characterizes a
trade-off between the constraints satisfaction and the low re-
gret when deciding the size of the buffer zone of OGD-BZ:
a larger buffer zone, which indicates a more conservative
search space, is preferred for constraints satisfaction; while
a smaller buffer zone is preferred for low regret.

Related work. We provide more literature review below.
Safe reinforcement learning for control systems. There is a
rich body of literature on safe RL and safe learning-based
control that studies how to learn optimal policies without vi-
olating constraints and without knowing the system (Fisac
et al. 2018; Aswani et al. 2013; Wabersich and Zeilinger
2018; Garcıa and Fernández 2015; Cheng et al. 2019; Zanon
and Gros 2019; Fulton and Platzer 2018). Perhaps the most
relevant paper is (Dean et al. 2019b), which proposes algo-
rithms to learn optimal linear policies for a constrained lin-
ear quadratic regulator problem. However, most theoretical
guarantees in the safe RL literature require time-invariant
environment and there lacks policy regret analysis when fac-
ing time-varying objectives. This paper addresses the time-
varying objectives but considers known system dynamics. It
is our ongoing work to combine both safe RL and our ap-
proach to design safe learning algorithms with policy regret
guarantees in time-varying problems.

Another important notion of safety is the system stability,
which is also studied in the safe RL/learning-based control
literature (Dean et al. 2018, 2019a; Chow et al. 2018).
Online convex optimization (OCO). (Hazan 2019) provides
a review on classical (decoupled) OCO. OCO with memory
considers coupled costs and decoupled constraints (Anava,
Hazan, and Mannor 2015). There are also papers on OCO
with coupled constraints (Yuan and Lamperski 2018; Cao,
Zhang, and Poor 2018; Kveton et al. 2008), where constraint
violation is usually allowed. Further, OCO does not consider
dynamical systems, let alone system disturbances.
Constrained optimal control. Constrained optimal control
enjoys a long history of research. Without disturbances, it
is known that the optimal controller for linearly constrained
LQR is piecewise linear (Bemporad et al. 2002). With dis-
turbances (as considered in this paper), the problem is much

more challenging. Existing approaches, such as robust tube-
based MPC (Limon et al. 2008; Rawlings and Mayne 2009;
Limon et al. 2010), usually sacrifices optimality for feasibil-
ity. Linear policies are also deployed in the literature (Limon
et al. 2008; Dean et al. 2019b; Schildbach, Goulart, and
Morari 2015), although linear policies may not be optimal
for constrained optimal control with disturbances.

Notations and conventions We let ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ de-
note the L1, L2, L∞ norms respectively for vectors and ma-
trices. We also use ‖ · ‖ to denote L2 norm. For two vectors
a, b ∈ Rn, we write a ≤ b if ai ≤ bi for any entry i. For bet-
ter exposition, some bounds use Θ(·) to omit constants that
do not depend on T or the problem dimensions explicitly.

2 Problem Formulation
In this paper, we consider an online optimal control problem
with linear dynamics and affine constraints. Specifically, at
each stage t = 0, 1, . . . , T , an agent observes the current
state xt and implements an action ut, which incurs a cost
ct(xt, ut). The stage cost function ct(·, ·) is generated ad-
versarially and revealed to the agent after the action ut is
taken. The system evolves to the next state according to (1),
where x0 is fixed, wt is a random disturbance bounded by
wt ∈ W = {w ∈ Rn : ‖w‖∞ ≤ w̄}, and states and actions
should satisfy the affine constraints (2). We denote the corre-
sponding constraint sets as X ={x ∈ Rn:Dxx ≤dx}, U =
{u ∈ Rm : Duu ≤ du}, where dx ∈ Rkx and du ∈ Rku .
Define kc = kx + ku as the total number of the constraints.

For simplicity, we consider that the parameters
A,B, w̄,Dx, dx, Du, du are known a priori, and leave
the unknown case as future work.

Definition 1 (Feasible controller). Consider a controller (or
an algorithm) A that chooses action uAt based on history
states {xAk }tk=0 and cost functions {ck(·, ·)}t−1

k=0. The con-
troller A is called feasible if xAt ∈ X and uAt ∈ U for all
0 ≤ t ≤ T and all disturbances {wk ∈ W}Tk=0.

For a feasible algorithm/controller A, the total cost is de-
fined as

JT (A) = E
{wk}

[
T∑
t=0

ct(x
A
t , u

A
t )

]
. (3)

Benchmark policy and policy regret. In this paper, we
consider linear policy of the form ut = −Kxt as our bench-
mark policy for simplicity, though the optimal policy for
the constrained control of noisy systems may be nonlinear
(Rawlings and Mayne 2009). We leave the discussion on
nonlinear policies as future work.

Based on (Cohen et al. 2018), we introduce the definition
of strong stability, which is a quantitative version of the sta-
bility property that permits non-asymptotic regret analysis.

Definition 2 (Strong Stability). A linear controller ut =
−Kxt is (κ, γ)-strongly stable for κ ≥ 1 and γ ∈ (0, 1]
if there exists a matrix L and an invertible matrix H such
that A − BK = H−1LH , with ‖L‖2 ≤ 1 − γ and
max(‖H‖2, ‖H−1‖2, ‖K‖2) ≤ κ.



Our benchmark policy class includes any linear controller
ut = −Kxt satisfying the conditions below:

K = {K : K is feasible and (κ, γ)-strongly stable.}
where K is called feasible if the controller ut = −Kxt is
feasible according to Definition 1.

The policy regret of online algorithm A is defined as

Reg(A) = JT (A)− min
K∈K

JT (K). (4)

Assumptions and definitions. For the rest of the pa-
per, we assume x0 = 0 for simplicity and define κB =
max(‖B‖2, 1). In addition, we introduce the following as-
sumptions on the disturbances and the cost functions, which
are standard in literature (Agarwal, Hazan, and Singh 2019).
Assumption 1. {wt} are i.i.d. with E[wt] = 0, covariance
matrix Σw, and bounded range ‖wt‖∞ ≤ w̄, where w̄ > 0.
Assumption 2. For any t ≥ 0, cost function ct(xt, ut) is
convex and differentiable with respect to xt and ut. Further,
there exists G > 0, such that for any ‖x‖2 ≤ b, ‖u‖2 ≤ b,
we have ‖∇xct(x, u)‖2 ≤ Gb and ‖∇uct(x, u)‖2 ≤ Gb.

Next, we define strictly and loosely feasible controllers.
Definition 3 (Strict and loose feasibility). A feasible con-
troller A is called ε-strictly feasible for some ε > 0 if
Dxx

A
t ≤ dx − ε1kx and Duu

A
t ≤ du − ε1ku for all

0 ≤ t ≤ T under any disturbance sequence {wk ∈ W}Tk=0.
A controller A is called ε-loosely feasible for some ε > 0

if Dxx
A
t ≤ dx + ε1kx and Duu

A
t ≤ du + ε1ku for all

0 ≤ t ≤ T under any disturbance sequence {wk ∈ W}Tk=0.
Besides, we assume that there exists a strictly feasible pol-

icy in K. We note that the existence of a strictly feasible so-
lution instead of just a feasible solution is usually required
in constrained optimization and control theory (Boyd and
Vandenberghe 2004; Limon et al. 2010).
Assumption 3. There exists K∗ ∈ K such that the policy
ut = −K∗xt is ε∗-strictly feasible for some ε∗ > 0.

Intuitively, Assumption 3 requires the sets X and U to
have non-empty interiors; and that the disturbance set W
is small enough so that a disturbed linear system xt+1 =
(A−BK∗)xt +wt stays in the interiors of X and U for any
{wk ∈ W}Tk=0. Since x0 = 0, Assumption 3 also implicitly
assumes that 0 belongs to the interiors of X and U . Finally,
although it is challenging to verify Assumption 3 directly,
(Limon et al. 2010) provides a sufficient condition to verify
Assumption 3, which is by solving a convex optimization in-
volving linear matrix inequalities (LMI) (Boyd et al. 1994).

3 Preliminaries
This section briefly reviews the unconstrained online opti-
mal control and robust constrained optimization literature;
techniques from which motivates our algorithm design.

3.1 Unconstrained online optimal control.
In our setting if one considers X = Rn and U = Rm, then
the problem reduces to an unconstrained online optimal con-
trol. For such unconstrained online control problems, (Agar-
wal, Hazan, and Singh 2019; Agarwal et al. 2019) propose a
disturbance-action policy class to design an online policy.

Definition 4 (Disturbance-Action Policy (Agarwal, Hazan,
and Singh 2019)). Fix an arbitrary (κ, γ)-strongly sta-
ble matrix K a priori. Given an H ∈ {1, 2, . . . , T}, a
disturbance-action policy defines the control policy as:

ut = −Kxt +

H∑
i=1

M [i]wt−i, ∀ t ≥ 0, (5)

where, M [i] ∈ Rm×n and wt = 0 for t ≤ 0. Let
M = {M [i]}Hi=1 denote the list of parameter matrices for
the disturbance-action policy.

In (5), K can be computed efficiently by SDP formulation
(Cohen et al. 2018). Further, (Agarwal, Hazan, and Singh
2019) introduces a bounded convex constraint set on policy
M for technical simplicity and without loss of generality:1

M2 ={M ={M [i]}Hi=1 :‖M [i]‖2≤κ3κB(1−γ)i,∀i} (6)

The following Proposition 1 derives the approximations
of the states and actions when implementing disturbance-
action policies.
Proposition 1 ((Agarwal et al. 2019)). When implement-
ing a disturbance-action policy (5) with time-varying Mt =

{M [i]
t }Hi=1 at each stage t ≥ 0, the states and actions satisfy:

xt = AHK xt−H + x̃t and ut = −KAHK xt−H + ũt, (7)

where AK = A−BK. The approximate/surrogate state and
action, x̃t and ũt, are defined as:

x̃t =

2H∑
k=1

Φxk(Mt−H:t−1)wt−k,

ũt = −Kx̃t +

H∑
i=1

M
[i]
t wt−i =

2H∑
k=1

Φuk(Mt−H:t)wt−k,

Φxk(Mt−H:t−1)=Ak−1
K 1(k≤H)+

H∑
i=1

Ai−1
K BM

[k−i]
t−i 1(1≤k−i≤H)

Φuk(Mt−H:t) = M
[k]
t 1(k≤H) −KΦxk(Mt−H:t−1),

where Mt−H:t := {Mt−H , . . . ,Mt}, the superscript k in
AkK denotes the kth power of AK, and M

[k]
t with super-

script [k] denotes the kth matrix in list Mt. Further, define
Φ̊xk(M) = Φxk(M , . . . ,M), Φ̊uk(M) = Φuk(M , . . . ,M).

Notice that x̃t and ũt are affine functions of Mt−H:t.
Based on x̃t and ũt, (Agarwal, Hazan, and Singh 2019) in-
troduces an approximate cost function:

ft(Mt−H:t) = E[ct(x̃t, ũt)],

which is convex with respect to Mt−H:t since x̃t and ũt are
affine functions of Mt−H:t and ct(·, ·) is convex.
OCO with memory. In (Agarwal, Hazan, and Singh 2019),
the unconstrained online optimal control problem is con-
verted to OCO with memory, i.e., at each stage t, the

1This is without loss of generality because (Agarwal et al. 2019)
shows that any (κ, γ)-strongly stable linear policy can be approxi-
mated by a disturbance-action policy inM2.



agent selects a policy Mt ∈ M2 and then incurs a cost
ft(Mt−H:t). Notice that the cost function at stage t couples
the current policy Mt with the H-stage historical policies
Mt−H:t−1, but the constraint setM2 is decoupled and only
depends on the current Mt.

To solve this OCO with memory problem, (Agarwal,
Hazan, and Singh 2019) defines decoupled cost functions

f̊t(Mt) := ft(Mt, . . . ,Mt), (8)

by letting the H-stage historical policies be identical to the
current policy. Notice that f̊t(Mt) is still convex. Accord-
ingly, the OCO with memory is reformulated as a classical
OCO problem with stage cost f̊t(Mt), which is solved by
classical OCO algorithms such as online gradient descent
(OGD) in (Agarwal, Hazan, and Singh 2019). The stepsizes
of OGD are chosen to be sufficiently small so that the varia-
tion between the current policy Mt and the H-stage histori-
cal policies Mt−H , . . . ,Mt−1 are sufficiently small, which
guarantees small approximation error between f̊t(Mt) and
ft(Mt−H:t), and thus low regrets. For more details, we refer
the reader to (Agarwal, Hazan, and Singh 2019).

3.2 Robust optimization with constraints.
Consider a robust optimization problem with linear con-
straints (Ben-Tal, El Ghaoui, and Nemirovski 2009):

min
x

f(x) s.t. a>i x ≤ bi, ∀ ai ∈ Ci, ∀ 1 ≤ i ≤ k, (9)

where the (box) uncertainty sets are defined as Ci = {ai =
ãi+Piz : ‖z‖∞ ≤ z̄} for any i. Notice that the robust con-
straint {a>i x ≤ bi, ∀ ai ∈ Ci} is equivalent to the standard
constraint {supai∈Ci [a

>
i x] ≤ bi}. Further, one can derive

sup
ai∈Ci

a>i x = sup
‖z‖∞≤z̄

(ãi + Piz)
>x

= ã>i x+ sup
‖z‖∞≤z̄

z>(P>i x) = ã>i x+ ‖P>i x‖1z̄ (10)

Therefore, the robust optimization (9) can be equivalently
reformulated as the linearly constrained optimization below:

min
x

f(x) s.t. ã>i x+ ‖P>i x‖1z̄ ≤ bi, ∀ 1 ≤ i ≤ k.

4 Online Algorithm Design
This section introduces our online algorithm design for on-
line disturbance-action policies (Definition 4).

Roughly speaking, to develop our online algorithm, we
first convert the constrained online optimal control to OCO
with memory and coupled constraints, which is later con-
verted to classical OCO and solved by OCO algorithms. The
conversion leverages the approximation and the reformula-
tion techniques reviewed in Section 3. During the conver-
sion, we ensure that the outputs of the OCO algorithms are
feasible for the original control problem. This is achieved
by tightening the original constraints (adding buffer zones)
to allow for approximation errors. Besides, we ensure small
buffer zones and small approximation errors so that the op-
timality/regret is not sacrificed significantly for feasibility.
The details of algorithm design are discussed below.

Step 1: Constraints on approximate states and actions.
When applying the disturbance-action policies (5), we can
use (7) to rewrite the state constraint xt+1 ∈ X as

DxA
H
K xt−H+1 +Dxx̃t+1 ≤ dx, ∀ {wk ∈ W}Tk=0, (11)

where x̃t+1 is the approximate state. Note that the term
DxA

H
K xt−H+1 decays exponentially with H . If there exists

H such that DxA
H
K xt−H+1 ≤ ε11kx , ∀ {wk ∈ W}Tk=0,

then a tightened constraint on the approximate state, i.e.

Dxx̃t+1 ≤ dx − ε11kx , ∀ {wk ∈ W}Tk=0, (12)

can guarantee the original constraint on the true state (11).
The action constraint ut ∈ U can similarly be converted

to a tightened constraint on the approximate action ũt, i.e.

Duũt ≤ du − ε11ku , ∀ {wk ∈ W}Tk=0, (13)

if Du(−KAHK xt−H) ≤ ε11ku for any disturbances.

Step 2: Constraints on the policy parameters. Next, we
reformulate the robust constraints (12) and (13) on x̃t+1 and
ũt as polytopic constraints on policy parameters Mt−H:t

based on the robust optimization techniques in Section 3.2.
Firstly, we consider the ith row of the constraint (12), i.e.

D>x,ix̃t+1 ≤ dx,i − ε1 ∀ {wk ∈ W}Tk=0, where D>x,i de-
notes the ith row of the matrix Dx. Note that this constraint
is equivalent to sup{wk∈W}Tk=0

(D>x,ix̃t+1) ≤ dx,i− ε1. Fur-
ther, by the definitions of x̃t+1 andW , and (10), we obtain

sup
{wk∈W}

D>x,ix̃t+1 = sup
{wk∈W}

D>x,i

2H∑
s=1

Φxs (Mt−H+1:t)wt+1−s

=

2H∑
s=1

sup
wt+1−s∈W

D>x,iΦ
x
s (Mt−H+1:t)wt+1−s

=

2H∑
s=1

‖D>x,iΦxs (Mt−H+1:t)‖1w̄

Define gxi (Mt−H+1:t) =
∑2H
s=1 ‖D>x,iΦxs (Mt−H+1:t)‖1w̄.

Hence, the robust constraint (12) on x̃t+1 is equivalent to the
following polytopic constraints on Mt−H+1:t:

gxi (Mt−H+1:t) ≤ dx,i − ε1, ∀ 1 ≤ i ≤ kx. (14)

Similarly, the constraint (13) on ũt is equivalent to:

guj (Mt−H:t) ≤ du,j − ε1, ∀ 1 ≤ j ≤ ku, (15)

where guj (Mt−H:t) =
∑2H
s=1 ‖D>u,jΦus (Mt−H:t)‖1w̄.

Step 3: OCO with memory and temporal-coupled con-
straints. Based on Step 2 and Section 3.1, we can con-
vert the constrained online optimal control problem to OCO
with memory and temporal-coupled constraints. That is, at
each stage t, the decision maker selects a policy Mt sat-
isfying constraints (14) and (15), and then incurs a cost
ft(Mt−H:t). In our framework, the constraints (14), (15)
and the cost function ft(Mt−H:t) couple the current pol-
icy with the historical policies. This makes the problem far
more challenging than OCO with memory which only con-
siders coupled costs (Anava, Hazan, and Mannor 2015).



Step 4: Benefits of the slow variation of online poli-
cies. We approximate the coupled constraint functions
gxi (Mt−H+1:t) and guj (Mt−H:t) as decoupled ones below:

g̊xi (Mt)=gxi (Mt, . . . ,Mt), g̊
u
i (Mt)=gui (Mt, . . . ,Mt),

by letting the historical policies Mt−H:t−1 be identical to
the current Mt. If the online policy Mt varies slowly with
t, which is satisfied by most OCO algorithms (e.g. OGD
with a diminishing stepsize (Hazan 2019)), one may be
able to bound the approximation errors by gxi (Mt−H+1:t)−
g̊xi (Mt) ≤ ε2 and guj (Mt−H:t)− g̊uj (Mt) ≤ ε2 for a small
ε2 > 0. Thus, the constraints (14) and (15) are ensured by
the polytopic constraints on Mt:

g̊xi (Mt) ≤dx,i− ε1 − ε2, g̊uj (Mt) ≤du,j− ε1 − ε2, (16)

where the buffer zone ε2 allows for the approximation error
caused by neglecting the variation of online policies.

Step 5: Conversion to OCO. By Step 4, we define a de-
coupled search space/constraint set on each policy below.

Ωε={M ∈M : g̊xi (M) ≤ dx,i − ε,∀1 ≤ i ≤ kx,
g̊uj (M) ≤ du,j − ε,∀ 1 ≤ j ≤ ku}.

(17)

whereM is a bounded convex constraint set defined as

M = {M : ‖M [i]‖∞ ≤ 2
√
nκ3(1−γ)i−1, ∀ 1 ≤ i ≤ H}.

Our setM is slightly different fromM2 in (6) to ensure that
Ωε is a polytope.2 Notice that Ωε provides buffer zones with
size ε to account for the approximation errors ε1 and ε2.

Based on Ωε and Section 3.1, we can further convert the
OCO with memory and coupling constraints in Step 3 to a
classical OCO problem below. That is, at each stage t, the
agent selects a policy Mt ∈ Ωε, and then suffers a convex
stage cost f̊t(Mt) defined in (8). We apply online gradient
descent to solve this OCO problem, as described in Algo-
rithm 1. We select the stepsizes of OGD to be small enough
to ensure small approximation errors from the problem con-
version and small buffer zones, but also to be large enough to
allow online policies to adapt to time-varying environments.
Conditions for suitable stepsizes are discussed in Section 5.

In Algorithm 1, the most computationally demanding step
at each stage is the projection onto the polytope Ωε, which
requires solving a quadratic program. Nevertheless, one can
reduce the online computational burden via offline compu-
tation by leveraging the solution structure of quadratic pro-
grams (see (Alessio and Bemporad 2009) for more details).

Lastly, we note that other OCO algorithms can be applied
to solve this problem too, e.g. online natural gradient.
Remark 1. To ensure safety, safe RL literature usually con-
structs a safe set for the state (Fisac et al. 2018), while this
paper constructs a safe search space Ωε for the policies di-
rectly. Further, safe RL literature may employ unsafe poli-
cies occassionally, for example, (Fisac et al. 2018) allows
unsafe exploration policies within the safe set and changes

2Compared withM2, ourM uses the L∞ norm; the
√
n factor

accounts for the change of norms; and κB disappears because we
can prove that κB is not necessary to ensure no loss of generality.

Algorithm 1: OGD-BZ
Input: A (κ, γ)-strongly stable matrix K, parameter

H > 0, buffer size ε, stepsize ηt.
1 Determine the polytopic constraint set Ωε by (17)

with buffer size ε and initialize M0 ∈ Ωε.
2 for t = 0, 1, 2, . . . , T do
3 Implement action ut = −Kxt+

∑H
i=1M

[i]
t wt−i.

4 Observe the next state xt+1 and record
wt = xt+1 −Axt −But.

5 Run projected OGD

Mt+1 = ΠΩε

[
Mt − ηt∇f̊t(Mt)

]
where f̊t(M) is defined in (8).

to a safe policy on the boundary of the safe set. However, our
search space Ωε only contains safe/feasible policies. Despite
a smaller policy search space, our OGD-BZ still achieves
desirable performance in Section 5. Nevertheless, when the
system is unknown, larger sets of exploration policies may
benefit the performance, which is left as future work.

5 Theoretical Results
In this section, we show that OGD-BZ guarantees both fea-
sibility and Õ(

√
T ) policy regret under proper parameters.

Preparation. To establish the conditions on the parame-
ters for our theoretical results, we introduce three quanti-
ties ε1(H), ε2(η,H), ε3(H) below. We note that ε1(H) and
ε2(η,H) bound the approximation errors in Step 1 and Step
4 of Section 4 respectively (see Lemma 1, Lemma 2 in Sec-
tion 5.1 for more details). ε3(H) bounds the constraint viola-
tion of the disturbance-action policy M(K), where M(K)
approximates the standard linear controller ut = −Kx for
any K ∈ K (see Lemma 3 in Section 5.1 for more details).
Definition 5. We define

ε1(H) = c1n
√
mH(1− γ)H , ε2(η,H) = c2η · n2

√
mH2

ε3(H) = c3
√
n(1− γ)H

where c1, c2, c3 are constant factors that depend polynomi-
ally on ‖Dx‖2, ‖Du‖2, κ, κB , γ−1, w̄, G.

Feasibility of OGD-BZ
Theorem 1 (Feasibility). Consider constant stepsize ηt =

η, ε ≥ 0, H ≥ log(2κ2)
log((1−γ)−1) . If the buffer size ε andH satisfy

ε ≤ ε∗ − ε1(H)− ε3(H),

the set Ωε is non-empty. Further, if η, ε and H also satisfy

ε ≥ ε1(H) + ε2(η,H),

our OGD-BZ is feasible, i.e. xOGD-BZ
t ∈ X and uOGD-BZ

t ∈ U
for all t and for any disturbances {wk ∈ W}Tk=0.
Discussions: Firstly, Theorem 1 shows that ε should be
small enough to ensure a nonempty Ωε and thus valid out-
puts of OGD-BZ. This is intuitive since the constraints



become more conservative as ε increases. Since ε1(H) +
ε3(H) = Θ(H(1−γ)H) decays withH by Definition 5, the
first condition also implicitly requires a large enough H .

Secondly, Theorem 1 shows that, to ensure feasibility, the
buffer size ε should also be large enough to allow for the to-
tal approximation errors ε1(H) + ε2(η,H), which is consis-
tent with our discussion in Section 4. To ensure the compat-
ibility of the two conditions on ε, the approximation errors
ε1(H) + ε2(η,H) should be small enough, which requires a
large enough H and a small enough η by Definition 5.

In conclusion, the feasibility requires a large enough H , a
small enough η, and an ε which is not too large or too small,
for example, we can select η ≤ ε∗

8c2n2
√
mH2 , ε∗/4 ≤ ε ≤

3ε∗/4, and H ≥ max(
log(

4(2c1+c2)n
√
m

ε∗ T )

log((1−γ)−1 , log(2κ2)
log((1−γ)−1) ).

Policy Regret Bound for OGD-BZ.
Theorem 2 (Regret Bound). Under the conditions in Theo-
rem 1, OGD-BZ enjoys the regret bound below:

Reg(OGD-BZ) ≤O
(
n3mH3ηT +

mn

η

+(1−γ)HH2.5T (
n4.5m2

ε∗
+
√
kcmn

2.5)

+ εTH1.5(
n3.5m1.5

ε∗
+
√
kcmn3)

)
where the hidden constant depends polynomially on
κ, κB , γ

−1, ‖Dx‖2, ‖Du‖2, ‖dx‖2, ‖du‖2, w̄, G.

Theorem 2 provides a regret bound for OGD-BZ as long
as OGD-BZ is feasible. Notice that as the buffer size ε in-
creases, the regret bound becomes worse. This is intuitive
since our OGD-BZ will have to search for policies in a
smaller set Ωε if ε increases. Consequently, the buffer size
ε can serve as a tuning parameter for the trade-off between
safety and regrets, i.e., a small ε is preferred for low regrets
while a large ε is preferred for feasibility (as long as Ωε 6= ∅).
In addition, although a small stepsize η is preferred for fea-
sibility in Theorem 1, Theorem 2 suggests that the stepsize
should not be too small for low regrets since the regret bound
contains a Θ(η−1) term. This is intuitive since the stepsize
η should be large enough to allow OGD-BZ to adapt to the
varying objectives for better online performance.

Next, we provide a regret bound with specific parameters.

Corollary 1. For sufficiently large T , when H ≥
log(4(2c1+c2)n

√
mT/ε∗)

log((1−γ)−1) , η = Θ( 1
n2
√
mH
√
T

), ε = ε1(H) +

ε2(η,H) = Θ( log(n
√
mT )√
T

), OGD-BZ is feasible and

Reg(OGD-BZ) ≤ Õ
(

(n3.5m1.5kc
0.5)
√
T
)
.

Corollary 1 shows that OGD-BZ achieves Õ(
√
T ) regrets

when H ≥ Θ(log T ), η = Θ̃(1/
√
T ) and ε = Θ̃(1/

√
T ).

This demonstrates that OGD-BZ can ensure both constraint
satisfaction and sublinear regrets under proper parameters
of the algorithm. We remark that although a larger H is pre-
ferred for better performance, the computational complexity
of OGD-BZ increases with H . Besides, though the choices

of H , η and ε above require the prior knowledge of T , one
can apply doubling tricks (Hazan 2019) to avoid this require-
ment. Lastly, we note that our Õ(

√
T ) regret bound is con-

sistent with the unconstrained online optimal control liter-
ature for convex cost functions (Agarwal et al. 2019). For
strongly convex costs, the regret for the unconstrained case
is logarithmic in T (Agarwal, Hazan, and Singh 2019), and
we conjecture that logarithmic regret can also be achieved
for the constrained case, which is our ongoing work.

5.1 Proof of Theorem 1
To prove Theorem 1, we first establish three lemmas that
bound errors by ε1(H), ε2(η,H) and ε3(H) respectively.
The proofs of these lemmas are in the supplementary file.

Firstly, we show that the approximation error in Step 1 of
Section 4 can be bounded by ε1(H).

Lemma 1. When Mt ∈M andH ≥ log(2κ2)
log((1−γ)−1) , we have

max
‖wk‖∞≤w̄

‖DxA
H
K xt−H‖∞ ≤ ε1(H)

max
‖wk‖∞≤w̄

‖D>u,jKAHK xt−H‖∞ ≤ ε1(H)

Secondly, we show that the error incurred by the Step 3 of
Section 4 can be bounded by ε2(η,H).

Lemma 2. When H ≥ log(2κ2)
log((1−γ)−1) , the policies {Mt}Tt=0

generated by OGD-BZ with a constant stepsize η satisfy

max
1≤i≤kx

|̊gxi (Mt)− gxi (Mt−H+1:t)| ≤ ε2(η,H)

max
1≤j≤ku

|̊guj (Mt)− guj (Mt−H:t)| ≤ ε2(η,H)

Thirdly, we show that for any K ∈ K, there exists a
disturbance-action policy M(K) ∈ M to approximate the
policy ut = −Kxt. However, M(K) may not be feasible
and is only ε3(H)-loosely feasible.
Lemma 3. For any K ∈ K, there exists a disturbance-
action policy M(K) = {M [i](K)}Hi=1 ∈ M defined as
M [i](K) = (K−K)(A−BK)i−1 such that

max(‖xKt − x
M(K)
t ‖2, ‖uKt − u

M(K)
t ‖2) ≤ ε3(H),

where (xKt , u
K
t ) and (x

M(K)
t , u

M(K)
t ) are produced by

controller ut=−Kxt and disturbance-action policy M(K)
respectively. Hence, M(K) is ε3(H)-loosely feasible.

Based on Lemma 3, we can further show that M(K) be-
longs to a polytopic constraint set in the following corol-
lary. For the rest of the paper, we will omit the arguments in
ε1(H), ε2(η,H), ε3(H) for notational simplicity.
Corollary 2. Consider K ∈ K, if K is ε0-strictly feasible
for ε0 ≥ 0, then M(K) ∈ Ωε0−ε1−ε3 .

Next, we prove that Ωε is non-empty by showing that
M(K∗) ∈ Ωε. Specifically, since K∗ defined in Assump-
tion 3 is ε∗-strictly feasible, by Corollary 2, there exists
M(K∗) ∈ Ωε∗−ε1−ε3 . Since the set Ωε becomes smaller
as ε increases, when ε∗ − ε1 − ε3 ≥ ε, we have M(K∗) ∈
Ωε∗−ε1−ε3 ⊆ Ωε, which proves that Ωε is non-empty.



Finally, we prove the feasibility by Lemma 1 and Lemma
2 based on the discussions in Section 4. Specifically, OGD-
BZ guarantees that Mt ∈ Ωε for all t. Thus, by Lemma 2,
we have gxi (Mt−H:t−1) = gxi (Mt−H:t−1) − g̊xi (Mt−1) +
g̊xi (Mt−1) ≤ ε2 + dx,i − ε for any i. Further, by Step 2 of
Section 4 and Lemma 1, we have D>x,ixt = D>x,iA

H
K xt−H+

D>x,ix̃t ≤ ‖DxA
H
K xt−H‖∞ + gxi (Mt−H:t−1) ≤ ε1 + ε2 +

dx,i − ε ≤ dx,i if ε ≥ ε1 + ε2 for any {wk ∈ W}Tk=0.
Therefore, xt ∈ X for all wk ∈ W . Similarly, we can show
ut ∈ U for any wk ∈ W . Thus, OGD-BZ is feasible.

5.2 Proof of Theorem 2
We divide the regret into three parts and bound each part.

Reg(OGD −BZ) = JT (A)− min
K∈K

JT (K)

= JT (A)−
T∑
t=0

f̊t(Mt)︸ ︷︷ ︸
Part i

+

T∑
t=0

f̊t(Mt)− min
M∈Ωε

T∑
t=0

f̊t(M)︸ ︷︷ ︸
Part ii

+ min
M∈Ωε

T∑
t=0

f̊t(M)− min
K∈K

JT (K)︸ ︷︷ ︸
Part iii

Bound on Part ii. Firstly, we bound Part ii based on the
regret bound of OGD in the literature (Hazan 2019).
Lemma 4. With a constant stepsize η, we have Part ii ≤
δ2/2η + ηG2

fT/2, where δ = supM ,M̃∈Ωε
‖M − M̃‖F ≤

4
√
mnκ3/γ and Gf = maxt supM∈Ωε ‖∇f̊t(M)‖F ≤

Θ(
√
n3H3m).

The bounds on δ,Gf are proved in the supplementary file.
Bound on Part iii. For notational simplicity, we denote
M∗ = arg minΩε

∑T
t=0 f̊t(M),K∗ = arg minK JT (K).

By Lemma 3, we can construct a loosely feasible Map =
M(K∗) to approximate K∗. By Corollary 2, we have

Map ∈ Ω−ε1−ε3 (18)

We will bound Part iii by leveraging Map as middle-ground
and bounding the Part iii-A and Part iii-B defined below.

Part iii =

T∑
t=0

(f̊t(M
∗)−f̊t(Map))︸ ︷︷ ︸

Part iii-A

+

T∑
t=0

f̊t(Map)−JT (K∗)︸ ︷︷ ︸
Part iii-B

Lemma 5. Consider K∗ ∈ K and Map = M(K∗), then
Part iii-B ≤ Θ(Tn2mH2(1− γ)H).

Lemma 6. Under the conditions in Theorem 2, we have

Part iii-A ≤ Θ

(
(ε1 + ε3 + ε)TH

3
2 (
n3.5m1.5

ε∗
+
√
kcmn3)

)
We highlight that Map may not belong to Ωε by (18).

Therefore, even though M∗ is optimal in Ωε, Part iii-A can
still be non-negative and has to be bounded to yield a re-
gret bound. This is different from the unconstrained online
control literature (Agarwal, Hazan, and Singh 2019), where

Part iii-A is non-positive because Map ∈M and M∗ is op-
timal in the same setM when there are no constraints (see
(Agarwal, Hazan, and Singh 2019) for more details).
Bound on Part i. Finally, we provide a bound on Part i.
Lemma 7. Apply Algorithm 1 with constant stepsize η, then
Part i≤O(Tn2mH2(1− γ)H+n3mH3ηT ).

The proof is similar to (Agarwal, Hazan, and Singh 2019).
Finally, Theorem 2 can be proved by summing up the

bounds on Part i, Part ii, Part iii-A, and Part iii-B in Lemma
4-7 and only explicitly showing the highest order terms.

5.3 Proof of Lemma 6
We define M † = arg minΩ−ε1−ε3

∑T
t=0 f̊t(M). By (18),

we have
∑T
t=0 f̊t(Map) ≥

∑T
t=0 f̊t(M

†). Therefore, it suf-
fices to bound

∑T
t=0 f̊t(M

∗) −
∑T
t=0 f̊t(M

†), which can
be viewed as the difference in the optimal values when per-
turbing the feasible set from Ωε to Ω−ε1−ε3 . To bound Part
iii-A, we establish a perturbation result by leveraging the
polytopic structure of Ωε and Ω−ε1−ε3 .
Proposition 2. Consider two polytopes Ω1 = {x : Cx ≤
h}, Ω2 = {x : Cx ≤ h−∆}, where ∆i ≥ 0 for all i. Con-
sider a convex function f(x) that is L-Lipschitz continuous
on Ω1. If Ω1 is bounded, i.e. supx1,x′1∈Ω1

‖x1 − x′1‖2 ≤ δ1
and if Ω2 is non-empty, i.e. there exists x̊ ∈ Ω2, then

|min
Ω1

f(x)−min
Ω2

f(x)| ≤ L δ1‖∆‖∞
mini:∆i>0(h− Cx̊)i

. (19)

The proof of Proposition 2 is in the supplementary file.
The rest of the proof is by applying Proposition 2. Firstly,

we provide bounds on the variables in (19) for our problem.
Lemma 8 (A sketch version). There exists an enlarged poly-
tope Γε = { ~W : C ~W ≤ hε} that is equivalent to Ωε for any
ε ∈ R, where ~W contains elements of M and auxiliary vari-
ables (to handle the constraints with absolute values).

Further, (i) Γ−ε1−ε3 is bounded by δ1 = Θ(
√
mn +

ε∗
√
kc); (ii)

∑T
t=0 f̊t(M) is Lipschitz continuous with L =

Θ(T (nH)1.5
√
m); (iii) The difference ∆ between Γε and

Γ−ε1−ε3 satisfies ‖∆‖∞ = ε + ε1 + ε3; (iv) There exists
~W ◦ ∈ Γε s.t. mini:∆i>0(h−ε1−ε3−C ~W ◦)i ≥ ε∗.

The full Lemma 8 and its proof are in the supplementary
file. The proof is completed by Lemma 8 and Proposition 2.

6 Conclusion and Future Work
This paper studies online optimal control with linear con-
straints and linear dynamics with random disturbances. We
propose OGD-BZ and show that OGD-BZ can satisfy all the
constraints despite disturbances and ensure Õ(

√
T ) policy

regret. The paper focuses on the theoretical results and de-
fer the numerical results to the supplementary file. There are
many interesting future directions, e.g. (i) consider adversar-
ial disturbances , (ii) consider soft constraints, (iii) consider
more general disturbances, (iv) consider bandit feedback, (v)
reduce the regret bound’s dependence on dimensions, (vi)
consider unknown systems, (vii) consider more general poli-
cies than linear policies, (viii) prove logarithmic regrets for
strongly convex costs, etc.



Ethics Statement
The primary motivation for this paper is to develop an on-
line control algorithm under linear constraints on the states
and actions, and under noisy linear dynamics. Some practi-
cal physical systems can be approximated by noisy linear
dynamics and most practical systems have to satisfy cer-
tain constraints on the states and actions, such as data center
cooling and robotics, etc. Our proposed approach ensures to
generate control policies that satisfies the constraints even
under the uncertainty of unknown noises. Thus our algo-
rithm can potentially be very beneficial for safety critical
applications. However, note that our approach relies on a set
of technical assumptions, as mentioned in the paper, which
may not directly hold for all practical applications. Hence,
when applying our algorithm, particular care are needed
when modeling the system and the constraints.
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