Research

Directed Acyclic Graph Neural Networks

ICLR

Published on

05/07/2021

Graph-structured data ubiquitously appears in science and engineering. Graph neural networks (GNNs) are designed to exploit the relational inductive bias exhibited in graphs; they have been shown to outperform other forms of neural networks in scenarios where structure information supplements node features. The most common GNN architecture aggregates information from neighborhoods based on message passing. Its generality has made it broadly applicable. In this paper, we focus on a special, yet widely used, type of graphs—DAGs—and inject a stronger inductive bias—partial ordering—into the neural network design. We propose the directed acyclic graph neural network, DAGNN, an architecture that processes information according to the flow defined by the partial order. DAGNN can be considered a framework that entails earlier works as special cases (e.g., models for trees and models updating node representations recurrently), but we identify several crucial components that prior architectures lack. We perform comprehensive experiments, including ablation studies, on representative DAG datasets (i.e., source code, neural architectures, and probabilistic graphical models) and demonstrate the superiority of DAGNN over simpler DAG architectures as well as general graph architectures.

Please cite our work using the BibTeX below.

@inproceedings{
thost2021directed,
title={Directed Acyclic Graph Neural Networks},
author={Veronika Thost and Jie Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=JbuYF437WB6}
}
Close Modal