Class-wise rationalization: teaching AI to weigh pros and cons
Shiyu Chang
Research Staff Member
Who they work with
Shiyu Chang is a research scientist at the MIT-IBM Watson AI Lab, working closely with Prof. Regina Barzilay and Prof. Tommi S. Jaakkola. His research focuses on machine learning and its applications in natural language processing and computer vision.
Most recently, he has been studying how machine predictions can be made more interpretable to humans, and how human intuition and rationalization can improve AI transferability, data efficiency, and adversarial robustness.
Prior to his current position, Shiyu was a research scientist at the IBM T.J. Watson Research Center. He got his B.S., and Ph.D. from the University of Illinois at Urbana-Champaign. His Ph.D. advisor is Prof. Thomas S. Huang.
Some words that keep me moving forward:
“A job well done is its own reward. You take pride in the things you do, not for others to see, not for the respect, or glory, or any other rewards it might bring. You take pride in what you do, because you’re doing your best. If you believe in something, you stick with it. When things get difficult, you try harder.”
Publications with the MIT-IBM Watson AI Lab